Topological Anisotropy of Stone-Wales Waves in Graphenic Fragments

نویسندگان

  • Ottorino Ori
  • Franco Cataldo
  • Mihai V. Putz
چکیده

Stone-Wales operators interchange four adjacent hexagons with two pentagon-heptagon 5|7 pairs that, graphically, may be iteratively propagated in the graphene layer, originating a new interesting structural defect called here Stone-Wales wave. By minimization, the Wiener index topological invariant evidences a marked anisotropy of the Stone-Wales defects that, topologically, are in fact preferably generated and propagated along the diagonal of the graphenic fragments, including carbon nanotubes and graphene nanoribbons. This peculiar edge-effect is shown in this paper having a predominant topological origin, leaving to future experimental investigations the task of verifying the occurrence in nature of wave-like defects similar to the ones proposed here. Graph-theoretical tools used in this paper for the generation and the propagation of the Stone-Wales defects waves are applicable to investigate isomeric modifications of chemical structures with various dimensionality like fullerenes, nanotubes, graphenic layers, schwarzites, zeolites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bondonic effects in group-IV honeycomb nanoribbons with Stone-Wales topological defects.

This work advances the modeling of bondonic effects on graphenic and honeycomb structures, with an original two-fold generalization: (i) by employing the fourth order path integral bondonic formalism in considering the high order derivatives of the Wiener topological potential of those 1D systems; and (ii) by modeling a class of honeycomb defective structures starting from graphene, the carbon-...

متن کامل

Study of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model

In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...

متن کامل

Sensitivity of Perfect and Stone-Wales Defective BNNTs Toward NO Molecule: A DFT/M06-2X Approach

The monitoring and controlling of environmental pollutions are very important in biological and industrial processes, and a great interest is growing with the development of suitable gas–sensitive materials and hazardous chemical removal devices. In this work, the highly parameterized, empirical exchange–correlation functional M06–2X were employed to investigate the electronic sensitivity of pe...

متن کامل

Hydrogen Peroxide Adsorption on Graphene with Stone-Wales Defect

To explore the possibility of using graphene based biosensor, adsorption of hydrogen peroxide on graphene has been investigated using density functional theory. The electronic properties of defect free and defective graphene in the presence of different number of hydrogen peroxide have been studied. The graphene with the most stable configuration defect named as SW defect is considered. The hig...

متن کامل

A Continuum Model For Stone-wales Defected Carbon Nanotubes

In this paper, a continuum model is proposed so that a Stone-Wales (SW) defected carbon nanotube (CNT) is replaced by an initial circumferential crack in a continuum cylindrical shell. For this purpose, the critical energy release rate and then the fracture toughness of a defected CNT are calculated using the results of an existing atomistic-based continuum finite element simulation. Finally, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2011